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Density matrix renormalization group studies of the effect of constraint release
on the viscosity of polymer melts

Matthias Paeßens* and Gunter M. Schu¨tz
Institut für Festkörperforschung, Forschungszentrum Ju¨lich-52425 Ju¨lich, Germany

~Received 28 January 2002; published 28 August 2002!

The scaling of the viscosity of polymer melts is investigated with regard to the molecular weight. We present
a generalization of the Rubinstein-Duke model, which takes constraint releases into account and calculates the
effects on the viscosity by the use of the density matrix renormalization group algorithm. Using input from
Rouse theory, the rates for the constraint releases are determined in a self-consistent way. We conclude that
shape fluctuations of the tube caused by constraint release are not a likely candidate for improving Doi’s
crossover theory for the scaling of the polymer viscosity.
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I. INTRODUCTION

The viscosity of polymer melts has been investigated
tensively@1#. The models for describing this behavior, how
ever, are not yet satisfying. Experiments show that the
cosity h scales likeM3.360.1, where M is the molecular
weight. This behavior is valid for several decades of
molecular weight. An early approach was the reptat
model by de Gennes@2# which yieldsh}M3 in the limit of
infinitely long polymers. For short polymers Doi@3# calcu-
lated the viscosity by taking tube length fluctuations in
account and found a region ofM where the scaling is of the
correct size—but this region appears to be too small. A d
crete model for reptation which includes tube length fluct
tions is the Rubinstein-Duke~RD! model @4,5#. Recently it
was shown@6# that this model does not only provide a regio
where a scaling ofM3.360.1 can be found, as already show
by Rubinstein@4#, but also that this model shows a crossov
to the reptation exponent 3. But again the mass region wh
the correct exponent is valid does not exceed one orde
magnitude. In this paper we extend the RD model in orde
investigate whether constraint release~CR! broadens that re
gion. While good models for the nonlinear regime of visco
ity can be constructed by using CR@7,8#, there was only little
success in the linear regime@9#.

II. THEORY

A. RD model

In order to investigate the role of tube length fluctuatio
in reptation theory Rubinstein introduced a discrete ‘‘repto
model that allows the description of three-dimensional r
tation dynamics by a one-dimensional lattice gas@4#. Duke
generalized the model to the case that an external ele
field acts on a charged polymer@5# which allows a good
description of the diffusion constant in gel electrophore
experiments@10#. However, also in the absence of a field t
generalization by Duke is useful insofar as it provides a r
erence axis along which the displacement of the polym
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chain as a whole can be monitored. This makes it possibl
calculate the diffusion coefficient and the viscosity from t
model, without resorting to independent hypotheses.

Rubinstein assumes that constraints of the other polym
divide space into cells which form ad-dimensional regular
cubic lattice. The polymer occupies a series of adjacent c
the ‘‘primitive path.’’ It is not possible for the polymer to
traverse the edges of the cells~in two dimensions~2D!: the
lattice points! so that only the ends of the polymer can en
new cells. The polymer is divided into segments who
lengths are of the order of the lattice constant, the numbe
segments is proportional to the length of the polymer or
molecular weight. The orientation of the lattice is introduc
by Duke in a way that the electric field is diagonal to t
lattice, i.e., in three dimensions in the~111! direction.

A segment—called a ‘‘repton’’—is allowed to jump int
an adjacent cell according to the following rules.

~1! The reptons in the bulk are only allowed to jump alo
the primitive path.

~2! No cell in the interior of the primitive path may be le
empty.

~3! The ends move freely insofar as rule~2! is respected.
If an end repton occupies the cell alone, it can only retrac
the cell of the adjacent repton. If the adjacent repton is in
same cell, the end repton may enter any of the 2D surrou
ing cells. Reptons in the bulk jump with the same probabil
as reptons at the end into occupied cells.

Rule ~1! ensures that the polymer does not traverse
edges of the cells. Rule~2! is motivated by the fact that the
segments are of the size of the lattice constant. Finally r
~3! reflects the fact that there are more free adjacent cells
an end repton than occupied ones. If one considers a
FÞ0 the ratio of the probabilities to jump in, respective
against the direction of the field is proportional to th
Boltzmann weight. In the following we will only focus on
the case without field, we only need the reference axis.

As the shape of the primitive path is not affected by t
movement of the polymer and only the ends are created
annihilated this model can be mapped onto one dimens
To this end a particle is assigned to each bond between
tons; starting on one end, a bond into the direction of
field is identified with anA particle, against the field with aB
particle and, finally, a bond without change of potential, i.
©2002 The American Physical Society06-1
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a bond between two reptons in one cell, by a vacancyB
~Fig. 1! @18#.

These particles are residing on a chain whose numbe
sitesN is the number of bonds, thus the number of repto
minus one. As for each site three states are possible
model can be identified with a ‘‘quantum’’ spin-one cha
@11,12#. We define

A[S 1

0

0
D , B[S 0

1

0
D , B[S 0

0

1
D .

We label this set of states withX5$A,B,B%. A state of a
chain of lengthN can be considered as an elementuh& of the
tensor baseX5X^ N; uh& is constructed by the tensor prod
uct of the three component vectors for the individual site

The dynamics of this one-dimensional model is
~1! A particles may exchange with vacanciesB,

AB�BA.
~2! B particles may exchange with vacanciesB;

BB�BB.
~3! A particles maynot exchange withB particles.
By these rules it is guaranteed that the shape of the pr

tive path is conserved. The following rules define the bou
ary dynamics.

~4! At the ends of the chainA particles may be annihi
lated,A→B.

~5! At the ends of the chainB particles may be annihi
lated,B→B.

~6! At the ends of the chainA particles may be created
B→A.

~7! At the ends of the chainB particles may be created
B→B.

The processes~1!, ~2!, ~4!, and ~5! take place with the
same probability; the processes~6! and~7! ared times more
probable.

In this way a stochastic interacting particle system o
one-dimensional chain has been defined. As the transit
are independent of the previous history this process is M
kovian. It should be pointed out that the one-dimensio
mapping is not able to reproduce the equilibrium statistics
the three-dimensional chain on length scales of the orde
the tube diameter@13#. These length scales correspond
time scales much shorter than those investigated in this w

FIG. 1. ~a! The repton model in two dimensions: the circl
represent the reptons; the primitive path is marked by the bold li
~b! Projection onto one dimension.
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~the renewal of the primitive path whose dynamics is ac
ally described in this model! and hence they need not take
into account.

B. Quantum Hamiltonian

A convenient way to describe the process mathematic
is the quantum Hamiltonian formalism which we will prese
here shortly, for details see Ref.@11#.

The probability to be in stateuh& at time t is labeled by
Ph(t). These probabilities of the individual states can
combined to a vector:uP(t)&5(Ph(t)uh&. Due to the con-
servation of probability the entries of the vectoruP(t)& sum
up to 1 at any timet. With this definition the master equatio
can be written as

d

dt
uP~ t !&52HuP~ t !& ~1!

with the stochastic generator

H52(
h

(
h8Þh

wh8→huh&^h8u1(
h

(
h8Þh

wh→h8uh&^hu.

~2!

Here wh8→h is the transition probability from stateuh8& to
uh&. In other words the off-diagonal elements of the mat
H are the negative transition rates between the respec
states and the diagonal elements are the sum of the
leading away from the respective state.

The creation operatorsa† and b† are defined bya†B
5A andb†B5B, acting on any other state yields zero. T
annihilation operatorsa and b are defined byaA5B and
bB5B, again acting on any other state yields again ze
Finally we define the number operatorsnA5a†a, nB5b†b,
andnB512nA2nB. By these definitions the stochastic ge
eratorH of the RD model reads@12#

H5b1~d!1bN~d!1 (
n51

N21

un ~3!

with

bn~d!5d@nn
B2an

†1nn
B2bn

†#1nn
A2an1nn

B2bn ,

un5nn
Ann11

B 2anan11
† 1nn

Bnn11
B 2bnbn11

† 1nn
Bnn11

A

2an
†an111nn

Bnn11
B 2bn

†bn11 .

Again, d labels the lattice dimension. We have chosen
time scale such that the hopping rate in the bulk equals un

C. Calculation of the viscosity

The viscosity is proportional to the longest relaxation tim
of the stochastic generatorH which is the inverse energy ga
@3#. Due to the conservation of probability the ground sta
of a stochastic generator has the eigenvalue zero, so tha
only need to calculate the first eigenvalue.

A very efficient algorithm to calculate the lowest excit
tions of quantum spin chains is the density matrix renorm

s.
6-2
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ization group~DMRG! algorithm @14,15#. For the standard
RD model the usefulness of this algorithm has been dem
strated@6#, so that we employ this algorithm as well for th
modifications of the RD model, to be introduced in wh
follows. The Hilbert space of the spin chain grows expon
tially with the number sitesN; the number of states is 3N, so
that forN550—the maximum number of sites considered
our calculations—the number of states is of the order 1023.
By this it is reasonable to project all quantities onto a s
space consisting of the most important states. The diffic
is to find out which states are the ‘‘most important.’’ Th
DMRG algorithm is a method that provides a choice of sta
which is optimal in terms of a maximum of the probabili
with which the states contribute to the target state@14,16#.
This probability is gained by diagonalizing the density m
trix. As the diagonalization of the density matrix for th
whole system would be as laborious as the direct diago
ization of the Hamiltonian the system is built up stepwis
Starting with a small system~e.g., 2 states! one adds itera-
tively two states until the system has reached the searc
size. In each step the Hilbert space is reduced to the subs
of the most probable states, so that the system size incre
while the dimension of the matrices remain constant.

D. Constraint release

The RD model as well as standard reptation theory
based on the assumption that the polymer moves in a fi
network formed by the surrounding polymers. This assum
tion is at best justifiable for a single polymer immersed in
gel. But for polymer melts, for which the viscosity is me
sured, it should be taken into account that the surround
polymers reptate themselves. In terms of the Rubins
model this means that the lattice itself is subjected to fl
tuations.

We consider the following model of lattice fluctuation
Imagine that a constraining polymer moves so far that
constraint for the investigated polymer is released so tha
can move freely in this region. After a short time the co
straining polymer returns or an other polymer has taken
place so that the free movement in this region is again p
vented. The lattice has regained its original structure but

FIG. 2. A constraining polymer vacates for a short time its s
and thus makes a constraint release event possible.
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primitive path may have changed in the bulk~Fig. 2!. This is
what we call a CR event.

Hence the effect of constraint release acts on the t
itself or in terms of the RD model on the primitive pat
whose dynamics is simulated. This is why the effects can
easily adopted in this model. Again, it should be mention
that the equilibrium statistics are only reproduced on the lo
time scale we are interested in. A straightforward implem
tation of this mechanism is shown in Fig. 3. The turning
the bend of the primitive path equals to the permutation of
AB pair. At the ends of the pathA particles can be trans
formed intoB particles and vice versa which corresponds
a CR event at the ends.

To construct the extended Hamiltonian that takes th
mechanisms into account, we introduce an operator
transformsB particles intoA particles,

c5a†b; c†5b†a, ~4!

the adjoint operator effects the reversed process. The co
sponding diagonal elements are build up bynB, respectively,
nA. Now the new Hamiltonian can be written as

HCR5H1g1~a!1gN~a!1 (
n51

N21

vn~a!,

gn~a!5a@nn
B2cn1nn

A2cn
†#, ~5!

vn~a!5a@nn
Bnn11

A 2cncn11
† 1nn

Ann11
B 2cn

†cn11#

with the HamiltonianH from Eq. ~3!, anda labels the rate
for the CR process.

III. CALCULATIONS AND RESULTS

In order to investigate the dependence of the viscosity
the CR ratea we performed DMRG calculations for th
rates 1/N, 1/N2, and 1/N3. The choice of these rates is bas
on two estimates. The first is very simple: A constraint
released when an end repton retracts back into the tube.
probability that the constraint is exerted by an end repton
2/N, provided that the probability for the presence of a se
ment is equally distributed. The hopping of a single repton
a process of rate one and so we find that the rate for a C
of the order of 1/N. For the second estimate we assume t
a CR is caused by a tube renewal. Later in this paper we
show the calculation of this estimate within the Rou
model, which leads to the result that the ratea is propor-

FIG. 3. Constraint release byAB permutation in the RD model
6-3
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tional to the inverse relaxation time and scales therefore w
1/N3.

The viscosity which was calculated with these rates
the mechanism of AB exchange is plotted in Fig. 4. It can
seen that the viscosity decreases with increasing CR rate
is reasonable because the relaxation of the tube is accele
by this process. For the investigation of the scaling it is m
useful to plot the local slope or the effective exponent

zN5
ln tN112 ln tN21

ln~N11!2 ln~N21!
~6!

against 1/AN as introduced in Ref.@6#. The choice of the
abscissa is motivated by the formula of Doi@3# which pre-
dicts a correction to theN3 scaling in the order of 1/AN by
taking tube length fluctuations into account. It should
mentioned that in this paperN labels the number of segmen
which is proportional to the length of the polymer while
Ref. @6# it labels the number of reptons that is the number
segments plus one. Surprisingly the latter interpretat
shows a better agreement with the Doi formula while
former shows a better agreement with the experiments s
the range wherezN'3.360.1 is much broader.

The influence on the effective exponentzN is plotted in
Fig. 5. The influence is nonmonotonic ina: While the rate
1/N causes an obvious shift down in comparison with
data without CR, the data of rate 1/N2 is located above the
curve without CR. The data of rate 1/N3 is also located
above the curve without CR but at a smaller distance.

We remark that from a theoretical point of view also t
ratea51 is interesting. IfA andB particles exchange with
the same rate as particles with vacancies, the particle
diffuse freely, as they no longer feel restrictions. This me
that the reptation model transforms into the Rouse mode
the tube can change its form freely. This is why ratea51
represents a possibility to verify the model: The relaxat
time should scale in the limitN→` asN2. But the DMRG
calculation of the effective exponent with this rate yields
diverging curve. On the other hand, if the second excitat
is considered, one can see that it scales asN22. This sug-

FIG. 4. The viscosity (h}EN
21) for several CR rates ofAB

permutation. The solid line shows the result for the standard
model without CR.
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gests that the first excitation is caused by an other relaxa
mechanism and the second excitation yields the desired t
which scales with the expected exponent whereby the t
sition to Rouse dynamics is verified.

The bounds 1/N.a.1/N3 are rather weak and a sel
consistent approach is needed for determining the appro
ate scaling of the ratea. As a CR event is caused by the tub
renewal of a polymer, this process is not independent of
relaxation time. The relaxation time itself is affected by t
CR rate. So the rate is physical, if the relaxation time, wh
is calculated using this rate, yields the same CR rate.

To calculate the self consistent rateaSC we proceed as
follows: The dependence of the CR rate on the relaxat
time a(t) is estimated by an analytical calculation usin
Rouse dynamics. The DMRG calculation with the rates m
tioned above yields directly the dependence of the relaxa
time on the CR ratetN(a) for the respective chain lengths
The inverse function ofa(t), t(a), is compared with
tN(a): The intersection of the curves yields the se
consistent rateaSC in first approximation.

First we calculate the dependence of the CR rate on
relaxation time. The polymer whose relaxation time we wa
to calculate finally is hindered in his free movement by
other polymer. The position that exerts the constraint m
have the distances from one end of the constraining poly
mer. So, the constraint is released when the polymer mo
either the distances into one direction or the distanceN2s
into the other direction, whereN labels the length of the
polymer. In Ref.@3# an expression is presented which pr
vides the distributionc(s,t) of the probability that the tube
segments was at timet not yet reached by the ends

c~s,t !5 (
p,odd

4

pp
sinS pps

N De2p2t/t ~7!

with the relaxation timet. The calculation of this formula
bases on the assumption that the polymer diffuses in betw
the tube due to Rouse dynamics. The complementary p

D
FIG. 5. The effective exponentzN for several CR rates ofAB

permutation. The solid line shows the result for the standard
model without CR.
6-4
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ability distribution f(s,t), which indicates the probability
that at timet the segments is already reached by one of th
ends is then

f~s,t !512c~s,t !. ~8!

The derivate with respect to time

f ~s,t !5
]f

]t
~9!

is the first passage time density, i.e., the probability per t
that the segments is reached by one end just at timet. Now
we can specify the mean first passage time

m̄~s!5E
0

`

dt t f~s,t !, ~10!

which indicates how long it takes in average until segmens
is reached by an end. Finally we average over alls provided
that each segment builds up an entanglement with the s
probability

m5
1

NE0

N

dsm̄~s!. ~11!

This is the desired time: In average the release of a const
will take the timem, the CR process takes place with ra
a5m21. The calculation of the integrals is elementary ma
ematics and we only show the result

m50.822t ⇒a51.22t21. ~12!

This calculation is based on a continuous description of
polymer. However, we are considering a lattice model
reptation so that boundary effects might not be taken i
account correctly by the continuum expression~11!. There-
fore we performed the above calculation as well for the d
crete case. As the result for the discrete case conve
quickly to the continuous case but consists of only numer

FIG. 6. Relaxation time versus CR ratea; aSC is given by the
intersection point of the curvestN and t ~here exemplified forN
530).
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evaluable series, we restricted ourselves to the continu
case here. There is an error of less than 2% for as little a
reptons.

Figure 6 shows the curvet(a)51.22a21 and the relax-
ation times for the CR ratesa51/N3 and 1/N2 exemplified
for N530, the data point fora51/N is out of the plotted
range. In order to investigate the dependence of the re
ation time on the CR rate we interpolated the data po
linearly by fitting them with splines. The data points are
well approximated by this interpolation in the region whe
the intersection point is expected. In this way we determin
the self-consistent relaxation times and rates for the leng
N58, . . . ,50. As thelengthsN54 andN56 do not lead to
reasonable intersection points we did not take them into
count. To verify the self-consistence a new DMRG run w
done with a fit of the determined rates; as can be seen in
7 the resulting relaxation times coincide well with the on
determined by the self-consistence condition, so that the
ear interpolation represents a sufficiently good approxim
tion.

In Fig. 8 the effective exponent is shown for the se
consistent relaxation times and for the DMRG calculatio

FIG. 7. The new DMRG calculation of viscosity—a good coi
cidence with the data of the intersection points can be seen.

FIG. 8. The effective exponentzN of the viscosity with self-
consistent CR.
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The exponent is shifted to higher values in the region
smallN, but a broadening of the region wherezN'3.3 could
not be observed.

The Rubinstein model is not microscopic and hence th
is some freedom in implementing microscopic process s
as CR. A different mechanism@10# leads to the creation an
annihilation of particles in the bulk. We performed simil
analysis for this mechanism with qualitatively similar resu
@17#.

We conclude that Rouse-based calculations do not lea
a proper description of crossover behavior in the visco
of polymer melts when Rouse theory is used as a s
s

ev

v.

or
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consistency input in the mesoscopic and generally quite s
cessful Rubinstein model for reptation. We cannot rule
that a fully self-consistent implementation of CR~without
Rouse assumption! leads to a crossover regime closer to e
pirical evidence, but the broad range of CR rates studied h
suggests that bulk shape fluctuations of the tube which re
from constraint release do not significantly broaden
crossover range of the viscosity.

The anomalous scaling thus still is an open question
the future it should be ruled out wheater other relaxat
mechanisms in the bulk can provide an explanation. A c
didate would be whole loops that wriggle into new pores a
by this form side branches of the primitive path.
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