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Density matrix renormalization group studies of the effect of constraint release
on the viscosity of polymer melts
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The scaling of the viscosity of polymer melts is investigated with regard to the molecular weight. We present
a generalization of the Rubinstein-Duke model, which takes constraint releases into account and calculates the
effects on the viscosity by the use of the density matrix renormalization group algorithm. Using input from
Rouse theory, the rates for the constraint releases are determined in a self-consistent way. We conclude that
shape fluctuations of the tube caused by constraint release are not a likely candidate for improving Doi's
crossover theory for the scaling of the polymer viscosity.
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[. INTRODUCTION chain as a whole can be monitored. This makes it possible to
calculate the diffusion coefficient and the viscosity from the
The viscosity of polymer melts has been investigated inmodel, without resorting to independent hypotheses.
tensively[1]. The models for describing this behavior, how-  Rubinstein assumes that constraints of the other polymers
ever, are not yet satisfying. Experiments show that the visdivide space into cells which form @&dimensional regular
cosity 7 scales likeM®3°%1 where M is the molecular cubic lattice. The polymer occupies a series of adjacent cells,
weight. This behavior is valid for several decades of thethe “primitive path.” It is not possible for the polymer to
molecular weight. An early approach was the reptatiortraverse the edges of the ce(la two dimensiong2D): the
model by de Gennel®] which yields »=M? in the limit of  lattice point$ so that only the ends of the polymer can enter
infinitely long polymers. For short polymers D8] calcu- new cells. The polymer is divided into segments whose
lated the viscosity by taking tube length fluctuations intolengths are of the order of the lattice constant, the number of
account and found a region & where the scaling is of the segments is proportional to the length of the polymer or the
correct size—but this region appears to be too small. A dismolecular weight. The orientation of the lattice is introduced
crete model for reptation which includes tube length fluctuaby Duke in a way that the electric field is diagonal to the
tions is the Rubinstein-DukéRD) model[4,5]. Recently it lattice, i.e., in three dimensions in till) direction.
was showr] 6] that this model does not only provide a region A segment—called a “repton”—is allowed to jump into
where a scaling oM33=%1 can be found, as already shown an adjacent cell according to the following rules.
by Rubinsteir{4], but also that this model shows a crossover (1) The reptons in the bulk are only allowed to jump along
to the reptation exponent 3. But again the mass region wherée primitive path.
the correct exponent is valid does not exceed one order of (2) No cellin the interior of the primitive path may be left
magnitude. In this paper we extend the RD model in order t&empty.
investigate whether constraint reled&R) broadens that re- (3) The ends move freely insofar as rul® is respected.
gion. While good models for the nonlinear regime of viscos-If an end repton occupies the cell alone, it can only retract in
ity can be constructed by using GR 8], there was only little  the cell of the adjacent repton. If the adjacent repton is in the
success in the linear regini8]. same cell, the end repton may enter any of the 2D surround-
ing cells. Reptons in the bulk jump with the same probability
as reptons at the end into occupied cells.
Il. THEORY Rule (1) ensures that the polymer does not traverse the
A RD model edges of the cells. Rul@) is motivat(_ed by the fact t_hat the
' segments are of the size of the lattice constant. Finally rule
In order to investigate the role of tube length fluctuations(3) reflects the fact that there are more free adjacent cells for
in reptation theory Rubinstein introduced a discrete “repton”an end repton than occupied ones. If one considers a field
model that allows the description of three-dimensional rep++0 the ratio of the probabilities to jump in, respectively,
tation dynamics by a one-dimensional lattice ¢4k Duke  against the direction of the field is proportional to the
generalized the model to the case that an external electri@oltzmann weight. In the following we will only focus on
field acts on a charged polymgs] which allows a good the case without field, we only need the reference axis.
description of the diffusion constant in gel electrophorese As the shape of the primitive path is not affected by the
experiment§10]. However, also in the absence of a field the movement of the polymer and only the ends are created or
generalization by Duke is useful insofar as it provides a ref-annihilated this model can be mapped onto one dimension.
erence axis along which the displacement of the polymefo this end a particle is assigned to each bond between rep-
tons; starting on one end, a bond into the direction of the
field is identified with arA particle, against the field with B
*Electronic address: m.paessens@fz-juelich.de particle and, finally, a bond without change of potential, i.e.,
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FIG. 1. (@) The repton model in two dimensions: the circles

represent the reptons; the primitive path is marked by the bold lines.

(b) Projection onto one dimension.

a bond between two reptons in one cell, by a vacagcy
(Fig. 1) [18].
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(the renewal of the primitive path whose dynamics is actu-
ally described in this modglnd hence they need not taken
into account.

B. Quantum Hamiltonian

A convenient way to describe the process mathematically
is the quantum Hamiltonian formalism which we will present
here shortly, for details see Ré¢fL1].

The probability to be in statey) at timet is labeled by
P,(t). These probabilities of the individual states can be
combined to a vectofP(t))=2P,(t)| ). Due to the con-
Servation of probability the entries of the vect&(t)) sum
up to 1 at any time. With this definition the master equation
can be written as

These particles are residing on a chain whose number of §t|P(t)>: —H|P(t)) (1)
sitesN is the number of bonds, thus the number of reptons

minus one. As for each site three states are possible thigiih the stochastic generator
model can be identified with a “quantum” spin-one chain

[11,17. We define

H==2 2 W, o7 [+ 2 w, |97l
7 p'#ny 7 9%y
(2)
Herew

' 1S the transition probability from state;’) to

| 7). In other words the off-diagonal elements of the matrix
H are the negative transition rates between the respective
states and the diagonal elements are the sum of the rates
leading away from the respective state.

The creation operatora’ and b' are defined bya'&
=A andb'@=B, acting on any other state yields zero. The
annihilation operators and b are defined byaA= and
bB=(J, again acting on any other state yields again zero.

A

%)

1
O 1
0
We label this set of states witk={A,J,B}. A state of a
chain of lengthN can be considered as an elemept of the
tensor bas& =X®N; | ) is constructed by the tensor prod-
uct of the three component vectors for the individual sites.

The dynamics of this one-dimensional model is
(1) A particles may exchange with vacanci€s,

AD=JIA. Finally we define the number operatar8=a'a, n®=b'b,
(2) B particles may exchange with vacancié€s; andn?=1-n"—nB. By these definitions the stochastic gen-
BO=UB. eratorH of the RD model readgl?2]

(3) A particles maynot exchange withB particles.

By these rules it is guaranteed that the shape of the primi-
tive path is conserved. The following rules define the bound-
ary dynamics.

N—-1

H=b,(d)+by(d)+ gl up ®3)

(4) At the ends of the chaii\ particles may be annihi- with
lated, A—J. B ot B et A B

(5) At the ends of the chaiB particles may be annihi- by(d)=d[ny —ay+ny—by]+ny—ay+ny—by,
lated,B— .

(6) At the ends of the chair particles may be created, Un=NANGs 1~ 8nahy 1+ NANG, g~ bobl +nPnd
D—A. ot B _pt

(7) At the ends of the chaiB particles may be created, Anan+1F M Mg = 0pbn s
J—B.

Again, d labels the lattice dimension. We have chosen the

The processesl), (2), (4), and (5) take place with the time scale such that the hopping rate in the bulk equals unity.

same probability; the process@ and(7) ared times more
probable.

In this way a stochastic interacting particle system on a
one-dimensional chain has been defined. As the transitions The viscosity is proportional to the longest relaxation time
are independent of the previous history this process is Maref the stochastic generatbrwhich is the inverse energy gap
kovian. It should be pointed out that the one-dimensiona[3]. Due to the conservation of probability the ground state
mapping is not able to reproduce the equilibrium statistics obf a stochastic generator has the eigenvalue zero, so that we
the three-dimensional chain on length scales of the order afnly need to calculate the first eigenvalue.
the tube diametef13]. These length scales correspond to A very efficient algorithm to calculate the lowest excita-
time scales much shorter than those investigated in this workions of quantum spin chains is the density matrix renormal-

C. Calculation of the viscosity
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FIG. 3. Constraint release ByB permutation in the RD model.

primitive path may have changed in the big. 2). This is
what we call a CR event.

FIG. 2. A constraining polymer vacates for a short time its site. Hence the effect of constraint release acts on the tube
and thus makes a constraint release event possible. itself or in terms of the RD model on the primitive path,
whose dynamics is simulated. This is why the effects can be
L ) easily adopted in this model. Again, it should be mentioned
ization group(DMRG) algorithm[14,15. For the standard ¢ the equilibrium statistics are only reproduced on the long
RD model the usefulness of this algorithm has been demoryjne scale we are interested in. A straightforward implemen-
strated[6], so that we employ this algorithm as well for the tation of this mechanism is shown in Fig. 3. The turning of
modifications of the RD model, to be introduced in whatthe bend of the primitive path equals to the permutation of an
follows. The Hilbert space of the spin chain grows exponen-aB pair. At the ends of the patA particles can be trans-
tially with the number sited\; the number of states iS¥3so  formed intoB particles and vice versa which corresponds to
that for N=50—the maximum number of sites considered ina CR event at the ends.
our calculations—the number of states is of the order.10 To construct the extended Hamiltonian that takes these
By this it is reasonable to project all quantities onto a subimechanisms into account, we introduce an operator that
space consisting of the most important states. The difficultyransformsB particles intoA particles,
is to find out which states are the “most important.” The
DMRG algorithm is a method that provides a choice of states
which is optimal in terms of a maximum of the probability
with which the states contribute to the target stté,16.
This probability is gained by diagonalizing the density ma-
trix. As the diagonalization of the density matrix for the
whole system would be as laborious as the direct diagonal- N-1
ization of the Hamiltonian the system is built up stepwise. HCR=H+g;(a)+gn(a)+ 2, va(a),
Starting with a small systerte.g., 2 statésone adds itera- n=1
tively two states until the system has reached the searched

c=a'b; c'=b'a, 4

the adjoint operator effects the reversed process. The corre-
sponding diagonal elements are build uprify respectively,
n”. Now the new Hamiltonian can be written as

— o nB_ At
size. In each step the Hilbert space is reduced to the subspace On(@)=ea[n;—cy+ny—cyl, 5
of the most probable states, so that the system size increases BA + AB +
while the dimension of the matrices remain constant. vn(@)=a[NyNn, 1= CnChuq T NyNnL 1~ CrCoisa]

with the HamiltonianH from Eq. (3), and « labels the rate
for the CR process.
The RD model as well as standard reptation theory is
based on the assumption that the polymer moves in a fixed lIl. CALCULATIONS AND RESULTS
network formed by the surrounding polymers. This assump-
tion is at best justifiable for a single polymer immersed in a In order to investigate the dependence of the viscosity on
gel. But for polymer melts, for which the viscosity is mea- the CR ratee we performed DMRG calculations for the
sured, it should be taken into account that the surroundingates 1N, 1/N?, and 1N3. The choice of these rates is based
polymers reptate themselves. In terms of the Rubinsteion two estimates. The first is very simple: A constraint is
model this means that the lattice itself is subjected to flucreleased when an end repton retracts back into the tube. The
tuations. probability that the constraint is exerted by an end repton is
We consider the following model of lattice fluctuations: 2/N, provided that the probability for the presence of a seg-
Imagine that a constraining polymer moves so far that thenent is equally distributed. The hopping of a single repton is
constraint for the investigated polymer is released so that i& process of rate one and so we find that the rate for a CR is
can move freely in this region. After a short time the con-of the order of IN. For the second estimate we assume that
straining polymer returns or an other polymer has taken it&t CR is caused by a tube renewal. Later in this paper we will
place so that the free movement in this region is again preshow the calculation of this estimate within the Rouse
vented. The lattice has regained its original structure but thenodel, which leads to the result that the rates propor-

D. Constraint release
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FIG. 4 The viscqsit)_/ % Eﬁl) for several CR rates oAB FIG. 5. The effective exponerd, for several CR rates oAB
permutat_lon. The solid line shows the result for the standard RDpermutation. The solid line shows the result for the standard RD
model without CR. model without CR.

tional to the inverse relaxation time and scales therefore with i o .
1N3 gests that the first excitation is caused by an other relaxation

The viscosity which was calculated with these rates formechanism and the second excitation yields the desired time,
the mechanism of AB exchange is plotted in Fig. 4. It can bé"{hiCh scales with the expected exponent whereby the tran-

seen that the viscosity decreases with increasing CR rate thﬁ'ltioﬂ tobRou§e ci\;;namics/ i53 verified.h « and .
is reasonable because the relaxation of the tube is accelerated | '€ bounds ™M>a>1/N" are rather weak and a self-

by this process. For the investigation of the scaling it is more?ONSistent approach is needed for determining the appropri-
useful to plot the local slope or the effective exponent ate scaling of the rate. As a CR event is caused by the tube
renewal of a polymer, this process is not independent of the

In7ys1— N7y relaxation time. The relaxation time itself is affected by the
NN+ D) =In(N=1) (6)  CR rate. So the rate is physical, if the relaxation time, which
is calculated using this rate, yields the same CR rate.

against 1N as introduced in Ref[6]. The choice of the To calculate the self consistent raig we proceed as
abscissa is motivated by the formula of 08| which pre- follows: The dependence of the CR rate on the relaxation

dicts a correction to th&l® scaling in the order of 4/N by Ezme o( dT) IS ?Stm_;_ite%l\aé gn alnally:[[!cal Q?rl]ctwat'o? using
taking tube length fluctuations into account. It should be ouse dynamics. The caiculation wi € rates men-

mentioned that in this papétlabels the number of segments tioned above yields directly the dependence of the relaxation

which is proportional to the length of the polymer while in time on the CR ratg-N(a) for the respe_ctwe chain Ieng.ths.
Ref.[6] it labels the number of reptons that is the number of N€ inverse function ofa(r), 7(a), is compared with
segments plus one. Surprisingly the latter interpretatiorfn(@): The intersection of the curves yields the self-
shows a better agreement with the Doi formula while thetonsistent ratersc in first approximation.

former shows a better agreement with the experiments since 'St we calculate the dependence of the CR rate on the
the range wherey~3.3+0.1 is much broader. relaxation time. The polymer whose relaxation time we want

The influence on the effective exponent is plotted in to calculate finally is hindered in his free movement by an

Fig. 5. The influence is nonmonotonic i While the rate other polymer. The position that exerts the constraint may

1/N causes an obvious shift down in comparison with thehave the distance from one end of the constraining poly-

data without CR, the data of rateN? is located above the mer. So, the constraint is released when the polymer moves

curve without CR. The data of rateN? is also located either the distancs into one direction or the distandé—s
above the curve Without CR but at a smaller distance into the other direction, wher®l labels the length of the

We remark that from a theoretical point of view also the polymer. In Ref.[3] an expression is presented which pro-

rate a=1 is interesting. IfA and B particles exchange with vides the distribution/(s,t) of the probability that the tube

the same rate as particles with vacancies, the particle Ca%egmens was at timet not yet reached by the ends

diffuse freely, as they no longer feel restrictions. This means

that the reptation model transforms into the Rouse model as 4 TS
the tube can change its form freely. This is why rate 1 P(s)= > —Wsin(T
represents a possibility to verify the model: The relaxation p.odd P

time should scale in the limii—o asN2. But the DMRG

calculation of the effective exponent with this rate yields awith the relaxation timer. The calculation of this formula
diverging curve. On the other hand, if the second excitatiorbases on the assumption that the polymer diffuses in between
is considered, one can see that it scalefNag. This sug- the tube due to Rouse dynamics. The complementary prob-

e p2t/T (7)
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FIG. 6. Relaxation time versus CR rate agc is given by the ] ] ) )
intersection point of the curves, and 7 (here exemplified foN FIG. 7. The new DMRG calculation of viscosity—a good coin-

=30).

cidence with the data of the intersection points can be seen.

ability distribution ¢(s,t), which indicates the probability €valuable series, we restricted ourselves to the continuous
that at timet the segmens is already reached by one of the case here. There is an error of less than 2% for as little as 10

ends is then
d(s,)=1—i(s1).
The derivate with respect to time

d
f(s,t)= a—(f

reptons.
Figure 6 shows the curve(a)=1.22¢"* and the relax-

(8)  ation times for the CR rates=1/N® and 1N? exemplified

for N=230, the data point foex=1/N is out of the plotted
range. In order to investigate the dependence of the relax-
ation time on the CR rate we interpolated the data points
linearly by fitting them with splines. The data points are is

©) well approximated by this interpolation in the region where

the intersection point is expected. In this way we determined

is the first passage time density, i.e., the probability per timéhe self-consistent relaxation times and rates for the lengths
that the segmert is reached by one end just at tiheNow ~ N=8, ...,50. As thdengthsN=4 andN=6 do not lead to

we can specify the mean first passage time

;(s)=f:dttf(s,t),

which indicates how long it takes in average until segngent
is reached by an end. Finally we average ovesaltovided
that each segment builds up an entanglement with the same

probability
1 N _ 42 T T T T T T T T
M:Nf dsu(s). (11
0
4r [—= gviéhout CR. 7
F oA SO

This is the desired time: In average the release of a constraint v DMRG with 0.
will take the timeu, the CR process takes place with rate B ]
a=u 1. The calculation of the integrals is elementary math-
ematics and we only show the result 3.6 7

uw=0.822r=a=1.22r"1. (12 3.4F -

This calculation is based on a continuous description of the 3,
polymer. However, we are considering a lattice model of
reptation so that boundary effects might not be taken into

reasonable intersection points we did not take them into ac-
count. To verify the self-consistence a new DMRG run was
done with a fit of the determined rates; as can be seen in Fig.

(10 7 the resulting relaxation times coincide well with the ones

determined by the self-consistence condition, so that the lin-
ear interpolation represents a sufficiently good approxima-
tion.

In Fig. 8 the effective exponent is shown for the self-

consistent relaxation times and for the DMRG calculation.

L | L L
account correctly by the continuum expressiaf). There- 0 0.1 02, N 0.3 04 0.5
fore we performed the above calculation as well for the dis-
crete case. As the result for the discrete case converges FIG. 8. The effective exponertty of the viscosity with self-
quickly to the continuous case but consists of only numericatonsistent CR.

3 L | L |
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The exponent is shifted to higher values in the region ofconsistency input in the mesoscopic and generally quite suc-
smallN, but a broadening of the region wherg~3.3 could  cessful Rubinstein model for reptation. We cannot rule out
not be observed. that a fully self-consistent implementation of QRithout

The Rubinstein model is not microscopic and hence ther&0USe assumptioneads to a crossover regime closer to em-
is some freedom in implementing microscopic process SucHmcal evidence, but the broad range of CR rates studied here

as CR. A different mechanisfi0] leads to the creation and suggests that bulk shape fluctuations of the tube which result
o . . ..~ from constraint release do not significantly broaden the
annihilation of particles in the bulk. We performed similar

) . . i N . crossover range of the viscosity.
analysis for this mechanism with qualitatively similar results  the anomalous scaling thus still is an open question. In

[17]. the future it should be ruled out wheater other relaxation

We conclude that Rouse-based calculations do not lead techanisms in the bulk can provide an explanation. A can-
a proper description of crossover behavior in the viscositydidate would be whole loops that wriggle into new pores and
of polymer melts when Rouse theory is used as a selfby this form side branches of the primitive path.
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